204/Phs. 22-23 / 22454

P.G. Semester-II Examination, 2023 PHYSICS

Course ID: 22454 Course Code: PHS-204C

Course Title: Statistical Mechanics-I and Nuclear Physics-II

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

UNIT-I

1. Answer any **three** of the following questions:

 $2 \times 3 = 6$

- a) Construct the canonical partition function of a system of localized spin-1/2 particles.
- b) What is an ensemble? Explain.
- c) Constitute the partition function of ten quantum harmonic oscillators.
- d) Prove that $Tr(\rho^2) \le 1$, where ρ is the density matrix operator.
- e) Consider 100 nonlinear triatomic molecules. What will be the dimension of the phase space and the minimum accessible volume?

[Turn over]

2. Answer any **two** of the following questions:

 $4 \times 2 = 8$

- a) For a system of spin-1/2 particles in a magnetic field \vec{H} , find the following:
 - i) Helmholtz free energy,
 - ii) Average energy at low and high temperature,
 - iii) Average magnetic moment at low and high temperature,
 - iv) Susceptibility. 1+1+1+1=4
- b) Consider a system of N localized atoms at temperature T. The quantized vibrational energy levels of each atom is given by

$$\in_n = \left(n + \frac{1}{2}\right)\hbar\omega, n = 0, 1, 2, \dots$$

- i) Show that the average energy per atom of this system is $U = \frac{1}{2}\hbar\omega + \frac{\hbar\omega}{e^{\beta\hbar\omega} 1}$
- ii) Show that the pressure of the system vanishes. 2+2
- c) i) Write down an expression of canonical partition function of two identical fermions in a system with four energy levels E, 2E, 3E and 4E (E>0).

- ii) Derive the expression of entropy of a three level system having equal populations in each level 2+2
- d) i) Define the density matrix in quantum statistics.
 - ii) Derive the equation of state of a system, i.e., obtain the quantum mechanical Liouvelli's theorem. 1+3
- 3. Answer any **one** of the following questions:

 $6 \times 1 = 6$

- a) i) Consider a two-level system having energy levels ε and $-\varepsilon$. Discuss the nature of the specific heat at constant volume of the system at low and high temperature if the system is populated with N non-interacting particles.
 - ii) From Combinatorial point of view derive an expression of entropy of the above system. Hence, explain the concept of negative temperature using entropy vs. average energy curve. 2+4
- b) Starting from the quantum distribution function, prove that the pressure exerted by a Fermi gas is greater than that of the Bose gas (you may consider a quantal gas). Comment on the result.

UNIT-II

4. Answer any three of the following questions:

 $2 \times 3 = 6$

- a) What is the experimental evidence for the existence of neutrino particle?
- b) What is Cherenkov radiation?
- c) How are the prompt neutrons produced in a fission reaction? What is beta delayed neutron?
- d) What is Photo Multiplier Tube (PMT)? Draw the schematic diagram of a PMT.
- e) What are the quark composition of k and π meson?
- 5. Answer any **two** of the following questions:

 $4 \times 2 = 8$

- a) What are the single escape and double escape peak in a gamma ray energy spectrum of a scintillator detector? Compare the energy spectrum when gamma ray (2.04 MeV) is incident in a very small volume and big volume inorganic scintillator detector? 2+2
- b) Calculate the energy released in fission and fusion from the binding energy per nucleon vs A graph, where A is mass number of a nucleus. Why D+T is more favorable to be used in fusion reactor compared to D+D reaction? 2+2

6

Why coulomb correction is necessary in Fermi's theory of beta decay? Compare (graphically) the energy distribution spectrum for β^+ and β^- decay. Discuss how do you measure the mass of a neutrino from β energy spectrum?

2+1+1

- d) Discuss the working principle of a semiconductor detector for gamma detection?
- 6. Answer any **one** of the following questions:

 $6 \times 1 = 6$

- a) Discuss how the charge particle losses its energy while passing through a medium. Can you use H₂O as moderator in fission reactor? Explain. 4+2
- b) What do you mean by β end point energy? Discuss Wu's experiment in support of non-conservation of parity in beta-decay. 1+5
